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Abstract. The one-dimensional overdamped Brownian motion in a symmetric periodic potential modu-
lated by external time-reversible noise is analyzed. The calculation of the effective diffusion coefficient is
reduced to the mean first passage time problem. We derive general equations to calculate the effective
diffusion coefficient of Brownian particles moving in arbitrary supersymmetric potential modulated by: (i)
an external white Gaussian noise and (ii) a Markovian dichotomous noise. For both cases the exact expres-
sions for the effective diffusion coefficient are derived. We obtain acceleration of diffusion in comparison
with the free diffusion case for fast fluctuating potentials with arbitrary profile and for sawtooth potential
in case (ii). In this case the parameter region where this effect can be observed is given. We obtain also a
finite net diffusion in the absence of thermal noise. For rectangular potential the diffusion slows down, for
all parameters of noise and of potential, in comparison with the case when particles diffuse freely.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion – 02.50.-r
Probability theory, stochastic processes, and statistics – 05.10.Gg Stochastic analysis methods
(Fokker-Planck, Langevin, etc.)

1 Introduction

Recently a considerable amount of analysis has been de-
voted to investigate the transport of Brownian particles in
spatially periodic stochastic structures, such as Josephson
junctions [1], Brownian motors [2] and molecular mo-
tors [3]. Specifically there has been great interest in study-
ing influences of symmetric forces on transport proper-
ties, and in calculating the effective diffusion coefficient in
the overdamped limit in particular [2,4–7]. Analytical re-
sults were obtained in arbitrary fixed periodic potential,
tilted periodic potentials, symmetric periodic potentials
modulated by white Gaussian noise, and in supersymmet-
ric potentials [4–8,10,11]. The acceleration of diffusion in
comparison with the free diffusion was obtained in refer-
ences [4,6,7,11]. At thermal equilibrium there is not net
transport of Brownian particles, while away from equilib-
rium, the occurrence of a current (ratchet effect) is ob-
served generically. Therefore, the absence rather the pres-
ence of net flow of particles in spite of a broken spatial
symmetry is the very surprising situation away from ther-
mal equilibrium, as stated in references [2,5]. Moreover,
the problem of the sorting of Brownian particles by the en-
hancement of their effective diffusion coefficient has been
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increasingly investigated in the last years, both from ex-
perimental [12–14] and theoretical points of view [4,15].
Specifically, the enhancement of diffusion in symmetric
potentials was investigated in references [4,14].

Motivated by these studies and by the prob-
lem of dopant diffusion acceleration in semiconductors
physics [16,17], we try to understand how nonequilibrium
symmetrical correlated forces influence thermal systems
when potentials are symmetric, and if there are new fea-
tures which characterize the relaxation process in symmet-
ric potentials. This is done by using a fluctuating periodic
potential satisfying the supersymmetry criterion [5], and a
different approach with respect to previous theoretical in-
vestigations (see review of Reimann in Ref. [2]). Using the
analogy between a continuous Brownian diffusion at large
times and the “jump diffusion” model [10,11], we reduce
the calculation of effective diffusion coefficient Deff to the
first passage time problem. We consider potentials modu-
lated by external white Gaussian noise and by Markovian
dichotomous noise. For the first case we derive the exact
formula of Deff for arbitrary potential profile. The general
equations obtained for randomly switching potential are
solved for the sawtooth and rectangular periodic poten-
tials, and the exact expression of Deff is derived without
any assumptions on the intensity of driving white Gaus-
sian noise and switchings mean rate of the potential.
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Fig. 1. Periodic potential with supersymmetry.

2 Fast fluctuating periodic potential

The effective diffusion coefficient in a fast fluctuating saw-
tooth potential was first investigated and derived in refer-
ence [6]. In papers [7] we generalized this result to the case
of arbitrary potential profiles. We consider the following
Langevin equation

dx

dt
= −dU (x)

dx
· η (t) + ξ (t) , (1)

where x(t) is the displacement in time t, ξ (t) and η (t) are
statistically independent Gaussian white noises with zero
means and intensities 2D and 2Dη, respectively. Further
we assume that the potential U (x) satisfies the supersym-
metry criterion [5]

E − U (x) = U

(
x − L

2

)
, (2)

where L is the spatial period of the potential (see Fig. 1).
Following reference [8] and because we have 〈x (t)〉 = 0,
we determine the effective diffusion coefficient as the limit

Deff = lim
t→∞

〈
x2(t)

〉
2t

. (3)

To calculate the effective diffusion constant we use the
“jump diffusion” model [10,11]

x̃(t) =
n(0,t)∑
i=1

qi, (4)

where qi are statistically independent random increments
of jumps with values ±L and n(0, t) denotes the total num-
ber of jumps in the time interval (0, t). In the asymptotic
limit t → ∞, the “fine structure” of a diffusion is unimpor-
tant, and the random processes x (t) and x̃(t) become sta-
tistically equivalent, therefore

〈
x2 (t)

〉 � 〈
x̃2(t)

〉
. Because

of the supersymmetry of the potential U (x), the probabil-
ity density reads P (q) = [δ (q − L) + δ (q + L)] /2. From
equations (3) and (4) we arrive at

Deff =
L2

2τ
, (5)

where τ = 〈τj〉 is the mean first-passage time (MFPT)
for Brownian particle with initial position x = 0 and ab-
sorbing boundaries at x = ±L. In fluctuating periodic

Fig. 2. Enhancement of diffusion in fast fluctuating periodic
potentials.

potentials, therefore, the calculation of Deff reduces to
the MFPT problem. Solving the equation for the MFPT
of Markovian process x(t) we obtain the exact formula
for Deff

Deff = D

⎡
⎣ 1

L

∫ L

0

dx√
1 + Dη [U ′ (x)]2 /D

⎤
⎦
−2

. (6)

From equation (6), Deff > D for an arbitrary potential
profile U (x), therefore we have always the enhancement
of diffusion in comparison with the case U (x) = 0. We
emphasize that the value of diffusion constant does not
depend on the height of potential barriers, as for fixed
potential [8], but it depends on its gradient U ′ (x). The
dependencies of effective diffusion constant Deff on the
intensity Dη of the modulating white noise are plotted in
Figure 2 for sawtooth, sinusoidal and piece-wise parabolic
potential profiles.

3 Randomly switching periodic potential
profile

Now we consider equation (1) where η(t) is a Marko-
vian dichotomous noise, which takes the values ±1 with
switchings mean rate ν. Thus, we investigate the Brownian
diffusion in a supersymmetric periodic potential flipping
between two configurations, U (x) and −U (x). In the
“overturned” configuration the maxima of the potential
become the minima and vice versa. In accordance with
equation (2), we can rewrite equation (1) as

dx

dt
= − ∂

∂x
U

(
x +

L

4
[η (t) − 1]

)
+ ξ (t) , (7)

Because of supersymmetric potential and time-reversible
Markovian dichotomous noise the ratchet effect is absent:
〈ẋ〉 = 0. All Brownian particles are at the origin at t = 0
and the “jump diffusion” model (4) and (5) is used, be-
cause the non-Markovian process x (t) has Markovian dy-
namics between flippings. The probability density of ran-
dom increments qi is the same of previous case and the
distribution of waiting times tj reads

w (t) =
w+ (t) + w− (t)

2
, (8)
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where w+ (t) and w− (t) are the first passage time dis-
tributions for the configuration of the potential with
η(0) = +1 and η(0) = −1 respectively. In accordance
with equation (8), τ is the semi-sum of the MFPTs τ+

and τ−, corresponding to the probability distributions
w+ (τ) and w− (τ). The exact equations for the MFPTs
of Brownian diffusion in randomly switching potentials,
derived from the backward Fokker-Planck equation, are

Dτ ′′
+ − U ′ (x) τ ′

+ + ν (τ− − τ+) = −1,

Dτ ′′
− + U ′ (x) τ ′

− + ν (τ+ − τ−) = −1, (9)

where τ+(x) and τ−(x) are the MFPTs for initial values
η(0) = +1 and η(0) = −1, respectively, with the starting
position of the Brownian particle at the point x. We con-
sider the initial position at x = 0 and solve equations (9)
with the absorbing boundaries conditions τ± (±L) = 0.
Because of the symmetry of the potential and of the di-
chotomous noise, the probability flow at the point x = 0
equals zero at any times. We solve, therefore, the equa-
tions (9) in the range (0, L) with the following boundary
conditions [18]: τ ′

± (0) = 0, τ± (L) = 0. By introducing
two auxiliary functions

T (x) =
τ+ (x) + τ− (x)

2
, θ (x) =

τ+ (x) − τ− (x)
2

(10)

we can rewrite equations (9) as

T ′′ − U ′(x)
D

θ′ = − 1
D

,

θ′′ − U ′(x)
D

T ′ − 2ν

D
θ = 0. (11)

After integrating the first equation (11) in the inter-
val (0, x) and substituting the function obtained T ′

T ′ (x) = − x

D
+

1
D

∫ x

0

U ′ (y) θ′ (y) dy, (12)

into the second equation (11), we obtain the following
integro-differential equation for the function θ (x)

θ′′ − U ′ (x)
D2

∫ x

0

U ′ (y) θ′ (y) dy− 2ν

D
θ = −xU ′ (x)

D2
. (13)

After integrating equation (12) in the interval (0, L), with
the above-mentioned boundary conditions and using equa-
tion (5), we get finally

Deff

D
=

[
1 − 2

L

∫ L

0

(
1 − x

L

)
U ′ (x) θ′ (x) dx

]−1

. (14)

The general equations (13) and (14) solve formally the
problem to calculate the effective diffusion coefficient in
the supersymmetric periodic potential U(x).

3.1 Switching sawtooth periodic potential

In such a case (see Fig. 3) from equations (13) and (14),
after algebraic rearrangements, we obtain the following

Fig. 3. Switching sawtooth periodic potential.

exact result

Deff

D
= 2α2 (1 + µ)

(
Aµ + µ + µ2 cosh 2α

)

×
(
2α2µ2 (1 + µ) + 2µAµ1 sinh2 α

+ 4αµAµ sinh α + 8Aµ2 sinh2(α/2)
)−1

, (15)

where Aµ = 1 − 3µ + 4µ coshα, Aµ1 = 7 − µ + 2α2µ2,
and Aµ2 = 1 − 6µ + µ2. Here α =

√
(E/D)2 + νL2/(2D)

and µ = νL2D/(2E2) are dimensionless parameters, E is
the potential barrier height. The equation (15) was de-
rived without any assumptions on the intensity of white
Gaussian noise, the mean rate of switchings and the val-
ues of the potential profile parameters. We introduce two
new dimensionless parameters with a clear physical mean-
ing: β = E/D, which is the ratio between the height of
the potential barrier and the intensity of white Gaussian
noise, and ω = νL2/(2D), which is the ratio between the
free diffusion time through the distance L and the mean
time interval between switchings. The parameters α and
µ can be expressed in terms of β and ω as: α =

√
β2 + ω,

µ = ω/β2. Let us analyze the limiting cases. At very rare
flippings (ω → 0) we have α � β, µ → 0 and equation (15)
gives

Deff

D
� β2

4 sinh2 (β/2)
, (16)

which coincides with the result obtained for the fixed
periodic potential. For very fast switchings (ω → ∞)
the Brownian particles “see” the average potential, i.e.
[U (x) + (−U (x))] /2 = 0, and we obtain diffusion in the
absence of potential. If we put in equation (15) α �√

ω
[
1 + β2/ (2ω)

] → ∞ and µ = ω/β2 → ∞, we find

Deff

D
� 1 +

β2

ω
. (17)

The normalized effective diffusion coefficient Deff /D as
a function of the dimensionless mean rate of potential
switching ω, for different values of the dimensionless
height of potential barriers β, is shown in Figure 4. A non-
monotonic behavior for all values of β is observed. We see
that Deff /D > 1 for different threshold values of ω. This
threshold value decreases with increasing height of the po-
tential barrier. In the limiting case of β � 1, we find from
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Fig. 4. The normalized effective diffusion coefficient versus
the dimensionless switchings mean rate of the potential ω =
νL2/(2D), for different values of the dimensionless height of
the potential barrier. Namely β = 3, 7, 9, for the curves a, b,
and c respectively.

equation (15),

Deff

D
� 1 +

β2 · [(1 + 2ω) cosh 2
√

ω

2ω2 cosh 2
√

ω

− (4 cosh
√

ω − 3) (1 + 4
√

ω sinh
√

ω − 2ω)]
2ω2 cosh 2

√
ω

. (18)

For low barriers we obtain the enhancement of diffusion at
relatively fast switchings: ω > 9.195. For very high poten-
tial barriers (β → ∞) and fixed mean rate of switchings
ν, we have α � β → ∞, µ → 0, and α2µ → ω. As a result,
we find from equation (15)

Deff =
νL2

7
. (19)

We obtained an interesting result: a diffusion at super-
high potential barriers (or at very deep potential wells)
is due to the switchings of the potential only. According
to equation (19), the effective diffusion coefficient depends
on the mean rate of flippings and the spatial period of po-
tential profile only and does not depend on D. The area of
diffusion acceleration, obtained by equation (15), is shown
on the plane (β, ω) in Figure 5 as the shaded area. This
area lies inside the rectangle region defined by β > 0 and
ω > 3.5.

3.2 Switching rectangular periodic potential

For a switching rectangular periodic potential, represented
in Figure 6, the main integro-differential equation (13)
includes delta-functions. To solve this unusual equation we
use the approximation of the delta function in the form of
a rectangular function with small width ε and height 1/ε,
and then make the limit ε → 0 in the final expression. As
a result, from equations (13) and (14) we get a very simple
formula

Deff

D
= 1 − tanh2 (β/2)

cosh (2
√

ω)
. (20)

Fig. 5. The shaded area is the parameter region on the
plane (β, ω) where the diffusion acceleration compared with
a free diffusion case can be observed.

Fig. 6. Switching rectangular periodic potential.

Fig. 7. The normalized effective diffusion coefficient versus
the dimensionless height of potential barriers β = E/D for
different values of the dimensionless switchings mean rate ω =
νL2/(2D).

We have slowing down of diffusion for all values of the
parameters β and ω. This is because in rectangular peri-
odic potential the Brownian particles can only move by
thermal force, crossing randomly the potential barriers as
in a fixed potential. The behavior of the normalized ef-
fective diffusion coefficient Deff /D, as a function of the
dimensionless height of the potential barrier β for differ-
ent values of the dimensionless mean rate of switchings ω,
is shown in Figure 7. The dependence of Deff /D versus ω
for different values of β is shown in Figure 8. For very rare
switchings from equation (20) we obtain the same result
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Fig. 8. The normalized effective diffusion coefficient versus
the dimensionless switchings mean rate ω = νL2/(2D) for dif-
ferent values of the dimensionless height of potential barriers
β = E/D.

as for fixed rectangular periodic potential

Deff

D
� 1

cosh2 (β/2)
. (21)

In the case of very fast flippings the effective diffusion co-
efficient, as for sawtooth potential (see Eq. (17)), is prac-
tically equal to the free diffusion one

Deff

D
� 1 − 2e−2

√
ω tanh2 (β/2). (22)

For relatively low potential barriers we get from equa-
tion (20)

Deff

D
� 1 − β2

4 cosh (2
√

ω)
. (23)

Finally, for very high potential barriers, Deff depends on
the white noise intensity D and the parameter ω

Deff � 2D

1 + coth2 √ω
. (24)

4 Conclusions

We studied the overdamped Brownian motion in fluctu-
ating supersymmetric periodic potentials. We reduced the
problem to the mean first passage time problem and de-
rived the general equations to calculate the effective diffu-
sion coefficient Deff . We obtain the exact formula for Deff

in periodic potentials modulated by white Gaussian noise.
For a switching sawtooth periodic potential, the exact for-
mula obtained for Deff is valid for arbitrary intensity of
white Gaussian noise, arbitrary parameters of the external
dichotomous noise and of potential. We derived the area
on the parameter plane (β, ω) where the enhancement of
diffusion can be observed. We analyzed in detail the lim-
iting cases of very high and very low potential barriers,
as well as very rare and very fast switchings. A diffusion
process is obtained in the absence of thermal noise. For
switching rectangular periodic potential the diffusion pro-
cess slows down for all values of dimensionless parameters
of the potential and the external noise.
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